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Motivation: At O(105) nodes, O(103) cores per node and O(109) thread concurrency, creating an exaflop 
algorithmic architecture that is matched to the given exascale machine architecture design envelope will 
pose daunting challenges for application scalability, reliability, and end-to-end performance. All of these 
challenges must be addressed before the exascale machine can deliver on its promise of enabling next-
generation science. First, more cores do not automatically translate into more FLOPS experienced by the 
application. Even on today’s platforms, application simulations are unable to efficiently scale to the 
available intra-node core counts, so much so that even leaving a core/node idle does not impact 
performance. In fact, modern node architectures such as the IBM BG/Q (with 18 cores/node) are designed 
to reserve a core for the OS and another is left as spare. Second, designing simulations for massive-cores 
per node requires application developers to monitor, tune and debug at scale to derive optimal performance. 
In addition, a reliable application run will require users to plan and recover from failures that will be the 
norm in future machines. Finally, delivering exaflop performance is one thing; delivering exascale science 
is an altogether different challenge. We can no longer afford to look at the application performance in terms 
of FLOPS alone. Rather, the science relevant metrics are a combination of FLOPS, reliability and 
scalability within an acceptable energy envelope. Exascale facilities will not reach their full potential if 
these problems are not resolved. New paradigms are needed to scale application performance in future 
massive-core systems for the exascale era and beyond. 
Solution: Our proposal is centered on the observation that in the post-petascale environment, everything 
off the compute node is too far away in terms of “clocks.” Many system resources and tools will need to be 
present (or at least represented) on a compute node and integrated and composed into system-level services 
at scale. Providing required resources outside of the node will not scale when we have O(105) nodes, each 
with 103 cores. Just as computational tasks are hierarchically subdivided and distributed across nodes and 
cores, other services required for effective simulation performance need to be hierarchically subdivided in a 
scalable and distributed fashion across the computational elements in a manner that facilitates overall 
application performance. Such distributed, scalable services include data placement, micro-task 
orchestration, monitoring, resiliency, validation, deep-memory access, etc. In the multi-petaflop and 
exaflop era, applications are likely to be so complex that we need on-node, lightweight, resilient, in-job 
resource allocation and management to better provision the available cores to various application activities. 
We propose a new computing paradigm for massive-core machines. Rather than dedicating all the cores on 
the compute nodes to only execute the homogeneous, parallel application simulation, we propose a 
functional partitioning (FP) runtime service environment for scalable performance by dedicating a 
subset of cores within a compute node to perform heterogeneous, application support activities, as a 
generalized approach to scalable and reliable execution at extreme-scale. With FP, we envision an 
environment, where each compute node hosts internal services (servlets) for different system functions, 
making the node itself a fundamentally scalable unit for service composition. The goal here is to define 
ways to view and organize the servlets (functions performed on a node) so that they can be composed into 
larger assemblies, while maintaining scalable performance, up to millions of cores and beyond, to be used 
in addressing many parts of the computing challenge. While the majority of cores per node (compute cores) 
are still occupied by the main applications simulation execution (MPI+OpenMP [1-4] or UPC [5], etc.), a 
subset of cores is dedicated to a variety of application support services. These servlets work in concert with 
the main computation, playing supporting or consumer roles. Thus, thematic to FP are the core ideas of 
decentralizing critical exascale services by placing them as “servlets” within each node and then spatially 
multiplexing them within the node to functionally distinct cores, alongside the application’s main 
computation. We argue that such an approach achieves scalability and performance at the very fabric of 
exascale architectures, making the socket/node into a self-contained entity. The analogy being: just as a 
large machine has compute, I/O and service nodes for different functions, we will enable a “system on 
chip”-like design by partitioning the cores in a node based on their functionality: compute, monitoring, 
resilience, data placement, networking and communication, efficient access to deep memory and analytics 
cores, etc. This is an inevitable—but often under-appreciated—requirement for many-core systems that can 
co-exist with MPI, OpenMP, etc. We argue that such an outlook brings a fresh perspective to current 
multi-core runtime research, the vast majority of which is focused only on raw scaling of applications. 
Interference Control: In our proposed environment, although the simulation and the FP servlets are run on 



separate cores many servlets will end up sharing data with the simulation. We propose to investigate such 
contention in three areas: main memory consumption, cache, and interconnection bandwidth sharing. We 
will create FP services to reduce interference. The impact of FP services, themselves, on interference is 
small and can be minimized using techniques such as out-of-core execution, i.e., on deep-memory NVM 
tiers (e.g., using our ongoing work on NVMalloc [6] for out-of-core data analytics.) While these accesses 
will be slower than DRAM latencies, it is a viable alternative to reduce the memory footprint while also 
making considerable progress on the FP servlets and, therefore, on the application’s overall effective 
performance. Next, we propose to coordinate the simulation and FP services in order to minimize 
contention to the interconnection bandwidth. An application can explicitly tell the FP services to hold-off 
any network traffic and buffer data until the main simulation is done with its transfers and communication 
traffic. We will explore this ability to define back off periods, which is the time when FP services should 
simply buffer their data and not utilize the network. For shared last-level cache contention, we argue that 
FP services are not cache-intensive and in many cases are synergistic with the main simulation. However, 
even when they are not, we can use prior research and tools such as ULCC [7] and other cache partitioning 
work [8] that can help minimize cache contention. One research issue pertinent to FP that needs to be 
addressed is how to determine and tune the cache partition sizes so that FP services do not lag behind in 
processing the data produced by the simulation. 
Related Work: There have been studies on utilizing available cores for online execution monitoring [9-
11]. Several research efforts have also advocated a pipelined model — that assigns various computational 
tasks of an application to different cores for [12-16] for parallelizing applications. There exist I/O libraries 
that dedicate processors or threads [17-19] for handling parallel I/O operations. Our FP approach for 
multicores directly targets the on-chip parallel computation efficiency problem, and presents a more 
general and versatile service model for balanced utilization of the increasing number of cores. Instead of 
having multiple core-specialization services developed independently, FP proposes a framework within 
which these services: can be built, interact with the main application, can share on-chip resources in a 
coordinated fashion, co-exist with other core-specialization services and work in concert with the 
application towards effective performance. To the best of our knowledge, a generic runtime framework to 
functionally partition the available cores has not been studied for mainstream HPC applications. Efforts 
such as the Tessellation OS partition manager [20] and factored OS (fos) [21] attempt to build scalable 
operating systems for massive-cores. It guarantees partitions of on-node physical resources to disparate, 
applications (often competing) and OS services. Factored OS proposes a distributed set of servers for each 
OS kernel service and assigns them to different cores for scalability. The goal there is to build OS services 
that run on different partitions from the applications. Instead, the FP runtime is concerned with the spatial 
scheduling of an exascale application’s own services and can work atop these operating systems. The 
services are not competing applications, but are intended to work in concert with the application’s 
simulation component, achieving better overall end-to-end performance. The FP runtime is responsible for 
this coordination and controlling any interference.  
Challenges addressed: FP will improve application turnaround, scalability, run reliability, energy 
consumption by minimizing data movement, hiding latencies, and alleviating the pressure on storage 
subsystems by reducing output sizes.  
Maturity and indicators that the approach will address the challenges: FP attempts to achieve a 
fundamental scalability at the socket/node-level, enabling larger assemblies. Our preliminary work on 
multiplexing data services alongside simulation in Supercomputing 2010 suggests that FP can not only 
improve application turnaround, but also reduce data movement costs [22].  
Uniqueness: In the exaflop era, applications are likely to be so complex that we need on-node, lightweight, 
resilient, in-job resource allocation and management to better provision the available cores to various 
application activities. Thus, FP is unique to exascale and is not likely to be addressed by other programs.  
Novelty: Allocating multiple services on a set of cores is different from most other current exascale efforts 
that restrict themselves to only considering collections of cores, each of which are dedicated to one service. 
Striping of closely coupled services across cores enables higher levels of scalability and reduces remote 
data placement demands. Finally, FP posits a novel design philosophy to runtime construction, one that is 
based on service composition rather than monolithic techniques. 
Effort: We foresee that a four-year, multi-institutional effort will be required to effectively explore the FP 
paradigm. A bottom-up exercise of identifying key exascale services, decentralizing them into on-node 
servlets, and co-locating them with simulations is needed to understand the interplay between them. Such 
an approach is critical to identifying and designing the functionality of the FP runtime framework. 
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